Project #8 Caspases, apoptosis and the degradome

0

Goup members:

Goh Jian Yuan Ma Yankun Shen Yujia Xiao Bin Xiao Lin

Introduction

Caspase (Cysteinyl aspartate protease)

Andreas Strasser, et al, Annu. Rev. Biochem. 2000.

- Essential in cells for apoptosis, inflammation and other important cellular processes
- Can cleave substrates at specific tetrapeptide sites

Degradome

- Represent the complete set of proteases that are expressed at a specific time by a cell, tissue or organism
- The natural substrate repertoire of an enzyme in a cell, tissue or organism is termed as the protease degradome.

The importance of degradome

- Elucidating the roles of caspases & proteases in various cellular pathways;
- Characterization of individual protease degradomes can further clarify the roles and significance of each protease and their downstream proteolytic events at the systems level;
- The knowledge of protease degradomes will be useful for therapeutic research and drug discovery

CASPASE SUBSTRATE CLEAVAGE PREDICTION METHODS

Peptide Cutter

- **PeptideCutter** predicts potential cleavage sites cleaved by proteases or chemicals in a given protein sequence.
- http://us.expasy.org/tools/peptidecutter

Enter a UniProtKB (Swiss-Prot or TrEMBL) protein identifier, ID (e.g. ALBU_HUMAN)

Perform the cleavage of the protein. Reset the fields.

CasPredictor

- Utilises the Caspase Cleavage Site searcher (CCSearcher) to point out potential substrate sites adjacent with PEST sequences. The algorithm is based on three parameters:
 - Substitution Index
 - Frequency Index
 - PEST index
- PEST sequences: P= proline, E= glutamate ,S=serine ,T= threonine.
- Predicted successfully more than 80% of the cleavage sites in experimentally verified caspase substrates.
- Not able to identify at least 20% of reported caspase substrates; some input data from recombinant proteins may not suitable in vivo.

Neural Networks

- Also known as Perceptron Network
- Sophisticated complex function incorporated in bioinformatic tools to solve complex problem and predict outcomes.
- Modelled after the physiological functioning of the brain
- Bioinformatic tools using Neural Network Learning includes:
 - Proteasomal Cleavage prediction site: NetChop 3.0
 - Signal Peptide Cleavage prediction site: SignalP

Neural Network

Single-layered Perceptron

Support Vector Machines (SVM)

 Supervised learning algorithm used in bioinformatic tools to predict outcomes with high confidence.

 Construct classification groups using margins

Maximise distance between classifications

Principles of SVM

• Optimal Margin Classifier

Separation may be easier in higher dimensions

How can bioinformatics tools help in degradome research?

- Manage database
- Predicts substrates of known protease
- Identifies unknown cleavage sites of known substrates
- Facilitates discovery of unidentified proteins

How can bioinformatics tools help in degradome research?

Simple software

PeptideCutter

PEPS

Databases & algorithms

CasPredictor

Complex /Expert systems

Neural Networks

Support Vector Machines (SVM) method

Conclusion

- The prediction methods are useful tools for research and Predict novel targets which are not yet studied
- Cost effective and relatively rapid process for predicting potential substrates.
- High throughput allows generation and screening of large volumes of data

LIMITATIONS

- Reliability of bioinformatic tools depends on the present findings and also the algorithm written by programmer.
- Predicted substrates using bioinformatic tools may not be physiologically relevant and still requires experimental validations.
- Users of bioinformatic tools needs to have a certain degree of biological expertise and IT knowledge.

CONCLUSION

- Bioinformatics is a necessary tool in research and has great potential if used correctly
- Results produced from bioinformatic tools should be taken with caution
- Very useful for speeding up discovery and knowledge mining
- May help provide a clearer and more complete picture once the research field is mature enough